МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» (РУТ (МИИТ)

ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ С МЕТОДИЧЕСКИМИ УКАЗАНИЯМИ ПО ДИСЦИПЛИНЕ Информационные сети и телекоммуникации		Протокол № от Автор:	<u>МЕХАНИКА И СВЯЗЬ</u> » 201г.
	ЗАДАНИЕ НА КО	УКАЗАНИЯМИ	ЕТОДИЧЕСКИМИ
	Информ	,	іуникации
Уровень ВО : Бакалавриат			
Форма обучения: Заочная	Уровень ВО:	Бакалавриат	
Kypc: 4	•	•	

Специализация/Профиль/Магистерская программа: (УТ) Системы и

технические средства автоматизации и управления

мах (УТб)

ОБЩИЕ УКАЗАНИЯ

Задание на контрольную работу составлено в соответствии с действующей рабочей программой.

Контрольная работа состоит из двух задач, посвященных принципам построения современных цифровых систем передачи. Варианты исходных данных к задачам студент выбирает по двум последним цифрам своего учебного шифра.

К выполнению контрольной работы рекомендуется приступать после изучения теоретической части курса в целом или разделов, рекомендованных в задачах. При выполнении контрольной работы следует привести исходные данные для каждой задачи в соответствии с вариантом, краткие пояснения, расчеты и схемы, предусмотренные методическими указаниями. Схемы должны быть выполнены в графических редакторах.

Оформление контрольной работы выполняется на одной стороне стандартных листов A4, с использованием текстовых редакторов, в соответствиями с требованиями по оформлению (14 шрифт, полуторный межстрочный интервал, поля справа — 3,5, слева 3, сверху и снизу — 2 см). Листы должны быть сброшюрованы и пронумерованы. В конце контрольной работы необходимо привести список использованной литературы.

КОНТРОЛЬНАЯ РАБОТА

ЗАДАЧА №1

Образовать кодовую группу для заданного отсчета сигнала при кодировании способом потактового сравнения.

Исходные данные приведены в таблице 1.

Таблица 1 – Исходные данные

Предпоследняя	Последняя цифра шифра									
цифра шифра	0	1	2	3	4	5	6	7	8	9
0	16,5	27,0	16,0	20,7	-9,2	22,0	25,0	32,0	14,1	17,4
	0,03	0,15	0,01	0,07	0,15	0,14	0,02	0,60	0,25	0,25
1	27,1	21,5	-11,9	16,8	8,5	-19,0	-28,1	21,4	6,2	11,2
	0,02	0,02	0,12	0,05	0,20	0,22	0,05	0,75	0,32	0,35
2	-8,7	-19,6	-9,1	-19,7	10,9	-18,9	31,2	19,5	8,2	14,6
	0,09	0,10	0,02	0,03	0,01	0,12	0,04	0,13	0,75	0,27
3	-11,0	-14,2	5,7	18,1	16,7	-11,5	16,5	20,3	13,1	29,2
	0,02	0,20	0,01	0,02	0,05	0,25	0,03	0,18	0,50	0,18
4	32,5	23,0	-12,0	15,7	-19,9	-13,5	19,1	15,1	19,2	-17,1
	0,06	0,50	0,05	0,01	0,05	0,10	0,05	0,32	0,02	0,15
5	-24,0	16,5	21,4	-27,2	18,1	16,1	14,2	-25,2	18,4	18,0
	0,05	0,30	0,07	0,07	0,03	0,07	0,06	0,41	0,14	0,27
6	-12,5	-30,7	-18,6	9,1	14,9	-21,6	-22,1	23,4	-21,0	-19,6
	0,12	0,50	0,03	0,50	0,02	0,04	0,04	0,52	0,03	0,41
7	31,5	21,5	20,6	19,1	-5,7	24,0	-24,0	-21,6	-25,1	14,1
	0,10	0,02	0,04	0,30	0,01	0,03	0,02	0,60	0,18	0,01
8	-22	-11,0	26,5	-13,7	-29,0	-27,2	29,0	-18,6	-23,2	-12,4
	0,02	0,10	0,02	0,10	0,03	0,05	0,03	0,41	0,45	0,04
9	15	8,5	13,1	-17,2	35,0	32,4	-30,9	14,1	19,5	6,2
	0,07	0,05	0,05	0,01	0,02	0,02	0,02	0,35	0,60	0,02

Примечание. В таблице 1 верхнее число в каждой строке показывает значение отсчета сигнала U, B, нижнее – минимальный шаг квантования Δ , B.

Методические указания

Перед выполнением задачи необходимо изучить принципы обработки сигналов в цифровой связи, принципы квантования и кодирования сигналов в системах передачи. Установить особенности линейного, нелинейного квантования и кодирования, квантователей с симметричной характеристикой, ознакомиться с устройством и работой кодера и декодера.

Материалы содержатся во втором разделе лекций.

Кодирование — это процесс замены отсчета сигнала определенной кодовой группой. Формирование кодовой группы осуществляется одновременно с квантованием отсчета по амплитуде (уровню), т.е. заменой отсчета ближайшим разрешенным значением кодовой группы в соответствии со шкалой квантования.

В цифровых системах передачи используется нелинейное квантование. Шкала квантования содержит 256 разрешенных значений — шагов квантования. Из них 128 для положительной полярности сигналов и 128 для отрицательной.

Характер нелинейности шкалы квантования определяется кривой компрессии типа А-87,6/13, показанная на рисунке 1 и представляющая собой амплитудную характеристику кодера. Применение нелинейного квантования позволило обеспечить достаточно высокую защищенность от шума квантования как сильных, так и слабых телефонных (речевых) сигналов.

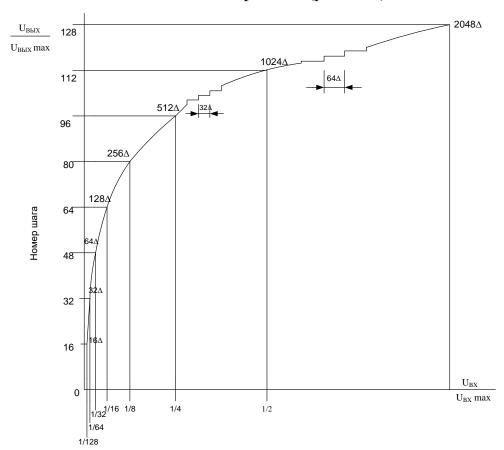


Рисунок 1 - Характеристика компрессии сигнала типа А-87,6/13 кодера ЦСП

В соответствии с кривой компрессии шаг квантования изменяется в зависимости от величины поступающего в кодер отсчета и лежит в пределах от Δ (для слабых сигналов) до 64Δ (для сильных сигналов). Характеристика компрессии составлена из прямолинейных отрезков-сегментов. Их восемь в положительной и восемь в отрицательной области значений сигнала (на рисунке показана ее положительная ветвь). Каждый из сегментов содержит 16 одинаковых шагов квантования. Первые два сегмента (C_0 и C_1) имеют один и тот же угол наклона к горизонтальной оси и равные шаги квантования Δ . С увеличением номера сегмента (C_2 ... C_7) его наклон уменьшается, а шаг квантования возрастает до 64Δ . Такой характер изменения крутизны кривой A-87,6/13 указывает на то, что при квантовании происходит и сжатие динамического диапазона сигнала.

Каждая кодовая группа цифрового сигнала представляет собой комбинацию из восьми двоичных символов 0 и 1. Отсюда число кодовых групп 2^8 =256, т.е. равно числу разрешенных значений на шкале квантования.

В процессе кодирования производится:

- определение и кодирование полярности (знака) отсчета; для этого достаточно одного такта кодирования, при котором фиксируются или 1 (при знаке « + ») или 0 (при знаке « »);
- поиск и кодирование сегмента, в переделах которого находится значение отсчета; для выбора одного из восьми сегментов очевидно необходимы три такта $(8=2^3)$;
- поиск и кодирование отсчета в пределах найденного сегмента; для выбора одного из 16 значений требуется четыре такта (16=2⁴).

В итоге кодовая группа содержит восемь разрядов.

Кодовая группа отсчета

P1	P2	P3	P4	P5	P6	P7	P8
Знак от-	Сегмент,	в котором н	находится	3н	ачение отсч	ета в сегмен	нте
счета		отсчет					

В основе операции кодирования лежит способ потактового сравнения (взвешивания). При каждом такте производится сравнение отсчета с эталонным сигналом, вырабатываемым в кодере. Этот способ аналогичен способу взвешивания предмета на механических рычажных весах при помощи гирьэталонов различного веса. Операция «электрического» взвешивания осуществляется в кодере при помощи компаратора (сотраге – сравнивать, лат.).

Для кодирования используются 11 эталонов: Δ , 2Δ , 4Δ , 8Δ , 16Δ , 32Δ , 64Δ , 128Δ , 256Δ , 512Δ и 1024Δ . При кодировании сегмента используются семь эталонов: 16Δ , 32Δ , 64Δ , 128Δ , 256Δ , 512Δ и 1024Δ (рис. 2). При кодировании отсчета в пределах сегмента требуются четыре эталона $n \cdot \Delta$, $2n \cdot \Delta$, $4n \cdot \Delta$ и $8n \cdot \Delta$. Причем значение п определяется минимальным шагом квантования в сегменте (n = 1, 2, 4, 8, 16, 32, 64).

После каждого такта (операции сравнения) в соответствующем разряде кодовой группы фиксируется символ 0 или 1. В случае, если значение отсчета оказалось больше эталона, то фиксируется 1, если меньше, то фиксируется 0. В электрическом сигнале символ 1 соответствует импульсу, а 0 – пробелу.

Поясним на примере порядок формирования кодовой группы на примере отсчета у= 110Δ . Из рисунка 1 видно, что отсчет находится в пределах сегмента C_3 . На рисунке 2 показана шкала сегментов и шкала значений отсчетов в сегменте.

Шкала сегментов (рис. 2, a) используется для образования первых четырех разрядов, шкала уровней (рис. 2, б) – остальных четырех. Выполним кодирование.

<u>Первый такт</u> – определяется знак отсчета путем сравнения с 0. Так как y > 0, то в первом разряде фиксируется 1. Символ 1 указан в скобках. Далее кодирование продолжается в положительной области шкалы квантования.

Второй такт – делается сравнение отсчета с эталоном 128Δ , это значение делит шкалу сегментов на две равные части по числу сегментов. При сравнении имеем у<128 Δ , следовательно, во втором разряде будет 0.

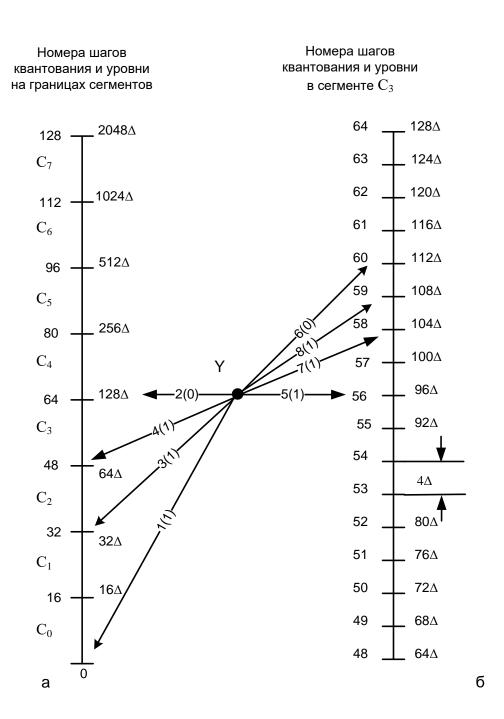


Рисунок 2 - Шкала квантования сегментов (a) и шкала значений отсчетов в сегменте (б)

Третий такт — делается сравнение с меньшим эталоном 32Δ , он делит нижнюю половину шкалы сегментов, в которой находится кодированное значение отсчета, также на две части. Так как у>32 Δ , то в третьем разряде фиксируется тоже 1.

<u>Четвертый такт</u> – проводится сравнение с большим эталоном 64Δ и в четвертом разряде фиксируется 1.

После четырех тактов кодирования найден знак отсчета (он «+») и сегмент, в пределах которого находится кодированное значение отсчета (он C_3). Кодирование продолжается в пределах сегмента C_3 (см. рис.2, б), помня при этом, что минимальный шаг квантования в этом сегменте равен 4Δ (n=4).

<u>Пятый такт</u> – делается уже сравнение с сумой эталонов $64\Delta + 32\Delta = 96\Delta$ – значением на середине шкалы уровней. Сравнение отсчета с этой суммой дает у > 96Δ , поэтому в пятом разряде будет 1.

Далее кодирование продолжается в верхней половине шкалы сегмента.

Шестой такт — проводится сравнение с суммой эталонов $64\Delta + 32\Delta + 16\Delta = 112\Delta$. При сравнении с полученной сумой получается у<112 Δ и в шестом разряде 0.

Седьмой такт — проводится сравнение с суммой эталонов $64\Delta + 32\Delta + 8\Delta = 104\Delta$. В результате у> 104Δ и в седьмом разряде 1.

Восьмой такт — проводится сравнение с сумой эталонов $64\Delta + 32\Delta + 8\Delta + 4\Delta = 108\Delta$. При сравнении получается у>108 Δ и в восьмом разряде 1.

На этом кодирование заканчивается, а кодовая группа отсчета будет определять двоичное число 10111011.

Весь процесс формирования кодовой группы представлен в таблице 2.

В заключение следует отметить, что при каждом такте кодирования поле поиска объекта на всей шкале квантования уменьшается в два раза.

Кроме того, из рисунка 2 можно видеть, что при кодировании сегмента используется нелинейное квантование, а при кодировании уровня в сегменте – линейное квантование.

Таблица 2 – Процесс формирования кодовой группы

Объект коди-	Такт коди-	Эталон или	Результат	Фиксированный
рования	рования	сумма эталонов	сравнения с	символ в кодовой
		сравнения	эталонами	группе
Полярность	1	0	y>0	1
отсчета				
Сегмент, в				
пределах ко-	2	128Δ	y<128Δ	0
торого нахо-	3	32∆	y>32Δ	1
дится значе-	4	64Δ	y>64Δ	1
ние отсчета				
Значение от-	5	64Δ+32Δ	y>96Δ	1
счета в сег-	6	$64\Delta+32\Delta+16\Delta$	y<112Δ	0
менте	7	$64\Delta + 32\Delta + 8\Delta$	y>104Δ	1
	8	$64\Delta + 32\Delta + 8\Delta + 4\Delta$	y>108Δ	1

Ознакомившись с пояснениями и рекомендованным материалом, можно приступать к выполнению задачи. Заданный отсчет (таблица 1) может быть выражен через свое значение и минимальный шаг квантования Δ

$$y = \frac{U}{\Lambda} \Delta$$
.

Тогда, например, для отсчета, напряжение которого U=25B, а минимальный шаг квантования Δ =0,02B, находим

$$y = \frac{25}{0,02} \Delta = 1250 \Delta.$$

Материал выполняемой задачи должен содержать шкалы квантования (рис. 2), таблицу кодирования (табл. 2) и необходимые пояснения при формировании кодовой группы для заданного отсчета.

ЗАДАЧА №2

Определить параметры цифровых каналов, построенных на основе принципов временного уплотнения сигналов в аналого-импульсной и цифровой форме (с применением группообразования с двухсторонним согласованием скоростей). Исходные данные приведены в таблице 3.

Таблица 3 – Исходные данные

Пара-	Предпоследняя	Последняя цифра шифра									
метр	цифра шифра	0	1	2	3	4	5	6	7	8	9
N		12	18	24	36	42	48	54	60	66	72
\mathbf{M}_1	0	3	3	4	4	5	5	6	6	7	7
q3/q4		2/1	4/2	2/3	4/2	2/3	4/2	2/3	4/2	2/1	4/2
N		18	24	36	42	48	54	60	66	72	12
\mathbf{M}_1	1	3	3	4	4	5	5	6	6	7	7
q_3/q_4		2/3	4/2	2/1	4/2	2/3	4/2	2/3	4/2	2/1	4/2
N		24	36	42	48	54	60	66	72	12	18
\mathbf{M}_1	2	3	3	4	4	5	5	6	6	7	7
q_3/q_4		2/3	4/2	2/1	4/2	2/3	4/2	2/1	4/2	2/3	4/2
N		36	42	48	54	60	66	72	12	18	24
\mathbf{M}_1	3	3	3	4	4	5	5	6	6	7	7
q3/q4		2/3	4/2	2/3	4/2	2/1	4/2	2/1	4/2	2/3	4/2
N		42	48	54	60	66	72	12	18	24	36
\mathbf{M}_1	4	3	3	4	4	5	5	6	6	7	7
q_3/q_4		2/3	4/2	2/3	4/2	2/3	4/2	2/1	4/2	2/1	4/2
N		48	54	60	66	72	12	18	24	36	42
\mathbf{M}_1	5	3	3	4	4	5	5	6	6	7	7
q_{3}/q_{4}		2/1	4/2	2/1	4/2	2/3	4/2	2/3	4/2	2/3	4/2
N		54	60	66	72	12	18	24	36	42	48
\mathbf{M}_1	6	3	3	4	4	5	5	6	6	7	7
q ₃ /q ₄		2/1	4/2	2/3	4/2	2/3	4/2	2/3	4/2	2/1	4/2
N		60	66	72	12	18	24	36	42	48	54
\mathbf{M}_1	7	3	3	4	4	5	5	6	6	7	7
q3/q4		2/3	4/2	2/3	4/2	2/1	4/2	2/3	4/2	2/1	4/2
N		66	72	12	18	24	36	42	48	54	60
\mathbf{M}_1	8	3	3	4	4	5	5	6	6	7	7
q3/q4		2/3	4/2	2/3	4/2	2/1	4/2	2/3	4/2	2/1	4/2
N		72	12	18	24	36	42	48	54	60	66
\mathbf{M}_1	9	3	3	4	4	5	5	6	6	7	7
q ₃ /q ₄		2/3	4/2	2/1	4/2	2/1	4/2	2/3	4/2	2/3	4/2

1. Определить тактовую частоту передачи $f_{m\theta}$ основного цифрового канала ОЦК, полученного путем преобразования стандартного аналогового телефонного сигнала в цифровой форму при использовании:

- линейной шкалы квантования;
- нелинейной шкалы квантования.
- 2. Построить цикл передачи первичного цифрового канала, в котором, за один цикл передается N стандартных телефонных сигнала (ОЦК) и два служебных. Значение N берется из таблицы 3. Шкала квантования нелинейная. Определить тактовую частоту f_{ml} первичной цифровой системы передачи, длительность сверхцикла T_{cq} , информационную эффективность $Э_{\Sigma l}$ цифрового потока.
- 3. Построить цикл передачи вторичного цифрового канала, получаемого путем временного группообразования M_1 первичных (полученных в предыдущем пункте). Кратность мультиплексирования M_1 берется из таблицы 3. Определить тактовую частоту f_{m1}^* цифрового сигнала на выходе БАС, скорость передачи вторичного цифрового канала f_{m2} , информационную эффективность $\Theta_{\Sigma 2}$ суммарного цифрового потока.
- 4. Построить цикл передачи третичного цифрового канала, получаемого путем временного группообразования четырех вторичных (полученных предыдущем пункте), при условии, что для возможности реализации средств сетевого автоматического контроля и управления (ССАКУ) в каждой группе на выходе БАС дополнительно формируется по q_3 служебных позиций (таблица 3). Определить тактовую частоту f_{m2}^* цифрового сигнала на выходе БАС, скорость передачи f_{m3} третичного цифрового канала, информационную эффективность $\Im_{\Sigma 3}$ суммарного цифрового потока.
- 5. Построить цикл передачи четверичного цифрового канала, полученного путем 4-хкратного мультиплексирования третичных, при условии, что для организации дополнительного канала передачи служебных данных во второй и третьей группе формируется по q_4 служебных позиции (таблица 3). Определить тактовую частоту f_{m3}^* цифрового сигнала на выходе БАС, скорость передачи f_{m4} четверичного цифрового сигнала, информационную эффективность $\Theta_{\Sigma 4}$ суммарного цифрового потока.

Методические указания

Перед выполнением задачи необходимо изучить принципы временного уплотнения сигналов в аналого-импульсной форме, особенности построения первичных систем передачи (ИКМ-30). Установить особенности посимвольного объединения цифровых потоков, смысл определения информационной эффективности суммарного цифрового потока, ознакомиться с общей структурной схемой работы оборудования временного группообразования. Изучить особенности процедуры согласования скоростей, принципы построения циклов передачи вторичного, третичного и четверичного каналов плезиохронной цифровой иерархии.

Материалы находятся в третьем и четвертом разделах лекций.

1. Тактовая частота передачи основного цифрового канала определяется по выражению

$$f_{m0} = f_{\mathrm{A}} \cdot m,$$

где f_{π} – частота дискретизации телефонного сигнала;

т – разрядность кода.

Разрядность кода, используемого при кодировании квантованных отсчетов, определяется способом квантования.

2. Период цикла первичного цифрового канала равен периоду дискретизации телефонного сигнала $T_{\pi}=125$ мкс. Цикл передачи показан на рисунке 3.

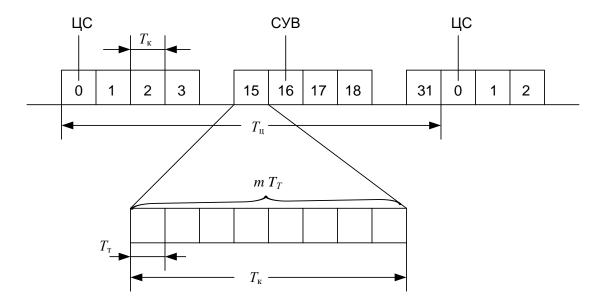


Рисунок 3 – Цикл передачи первичного цифрового канала

В интервале T_{II} последовательно передаются в цифровом двоичном коде выборки 30 телефонных сигналов (т.е. в данном случае, N=30) и два служебных цифровых сигнала: цикловой синхронизации (ЦС) и сигналов управления и взаимодействия для АТС (СУВ). Каждая выборка передается в своем канальном интервале (КИ), имеет длительность кодовой комбинации T_{K} и состоит из m разрядов. Длительность разряда — T_{T} . При m=8 получим

$$f_{T1} = \frac{1}{T_T} = \frac{1}{T_{\kappa}/8} = \frac{1}{T_{\mu}/8 \cdot 32} = F_{\pi} \cdot 32 \cdot 8 = 2048 \text{ к} \Gamma \text{ц}$$

Как видно из рисунка, для передачи сигнала ЦС используется нулевой канальный интервал КИ0, а для передачи сигнала СУВ – 16-й канальный интервал КИ16 ([N+2]/2). Остальные канальные интервалы используются для передачи телефонных сигналов.

В первичной ЦСП выборка СУВ одного абонента передается в виде 3-разрядной кодовой комбинации, при этом в одном КИ16 размещаются выборки СУВ двух абонентов. Для передачи по одному разу выборок всех N абонентов потребуется время $T_{cu} = T_u \ (N/2 + 1)$ мс, которое называется сверхциклом, при этом в каждом 16 цикле будет передаваться сигнал сверхцикловой синхронизации (СЦС). С помощью сигнала СЦС на приемной стороне производится разделение кодированных выборок СУВ отдельных каналов.

Информационная эффективность суммарного цифрового определяется следующим выражением.

$$\mathfrak{I}_{\Sigma} = \frac{M}{M+C} \tag{1}$$

где M – общее количество информационных символов в цифровом потоке; С – общее число служебных символов в цифровом потоке.

3. Построение циклов передачи вторичного, третичного и четверичного цифровых каналов рассмотрим на примере стандартов Европейской плезиохронной иерархии (цифровые потоки E2, E3 и E4).

Цикл передачи вторичного сигнала $T_{\rm H2}$ выбран равным 125 мкс, что равно циклу первичного цифрового канала. Построение цикла вторичного цифрового сигнала, получаемого путем временного асинхронного объединения четырех первичных цифровых сигналов с использованием двухстороннего (положительно-отрицательного) согласования скоростей, иллюстрирует рисунок 4.

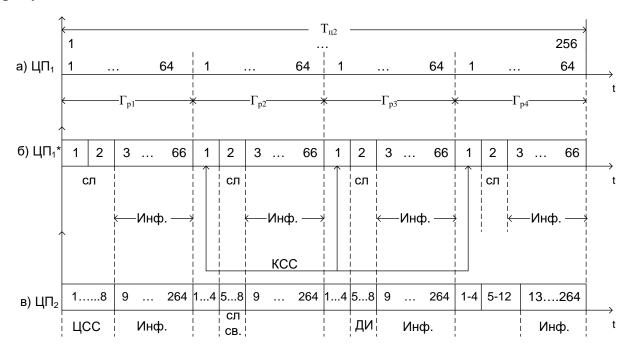


Рисунок 4 – Построение цикла передачи вторичного цифрового канала

В номинальном режиме в блок асинхронного согласования БАС (рисунок 5) за это время поступит первичный цифровой поток Ц Π_1 , который содержит в себе 256 информационных символов (рисунок 4, а). Для уменьше-

ния объема памяти БАС цикловой сигнал преобразованного цифрового потока Ц Π_1^* на выходе БАС формируют в виде последовательности четырех подциклов (групп), нумеруемых соответственно Гр₁, Гр₂, Гр₃ и Гр₄. Каждая группа преобразованного Ц Π_1^* на выходе БАС дополнительно содержит по два служебных символа (рис. 4, б), соответственно, каждая группа включает 66 импульсных позиций (ИП), а всего в цикле размещается 264 ИП.

Длительность каждой ИП равна $T_{\rm T}^* = T_{\rm H2}/264$, а частота следования соответственно $f_{\rm T1}^* = 1/|T_{\rm T}^*| = 2112$ кГц, что равно 1/4 номинальной частоты вторичного ЦП₂. Для определения тактовой частоты преобразованного цифрового потока можно воспользоваться следующими выражениями:

$$f_m^* = \frac{N_n^*}{T_{mn}},$$
 (2)

где N_n^* – общее количество символов в преобразованном цифровом потоке; T_{un} – период цикла соответствующего цифрового потока.

$$f_m^* = \frac{N_n^*}{N_n} \cdot f_m, \tag{3}$$

Где N_n – общее количество символов в ЦП на входе БАС

 f_m – тактовая частота ЦП на входе БАС.

В устройстве объединения УО (рис. 5) происходит посимвольное объединение четырех синхронных и синфазных Ц Π_1^* вида рис. 4, б, которые имеют одинаковую структуру цикла и скорость передачи 2112 кбит/с. В результате этого происходит формирование вторичного цифрового потока со скоростью $f_{T2} = 8448 = 4.2112$, кбит/с. Одновременно, во вторичный цифровой поток вводятся служебные символы (рис. 4, в):

- 8-битовая группа ЦСС на позициях циклового синхросигнала;
- 4-битовая группа для организации канала служебной связи;
- 4-битовая группа для организации канала передачи дискретной информации.

Распределение символов в 4-й группе зависит от режима работы оборудования.

На рисунке 5 показана обобщенная структурная схема устройства временного объединения.

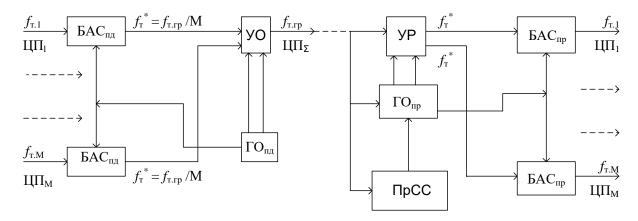


Рисунок 5 – Обобщенная структурная схема оборудования временного группообразования

Количество символов первичного цифрового потока на входе БАС определяется ПЦК, полученным в предыдущем пункте. Количество объединяемых ПЦК определяется из таблицы 4 в соответствии с вариантом. Количество и распределение служебных символов принимается по аналогии со стандартным вторичным цифровым потоком, рассмотренным в примере.

Информационная эффективность вторичного цифрового потока определяется по формуле 1. В качестве информационных символов принимаются символы первичного цифрового канала.

4. Цикл передачи третичного цифрового канала $T_{\rm u3}$ имеет период

$$T_{\text{II}3} = 0.5 \cdot T_{\text{II}2} = 62.5 \text{ MKC}$$

и делится на три подцикла (группы) длительностью $T_{\text{пц3}} = T_{\text{ц3}}/3$. При этом, общее количество символов Ц Π_2 на входе БАС будет составлять

$$T_{\text{II}3} \cdot f_{\text{T}2} = 528,$$

т.е. половину символов вторичного цифрового канала, а каждая группа, соответственно, номинально будет содержать по 176 ИП (рис. 6, а).

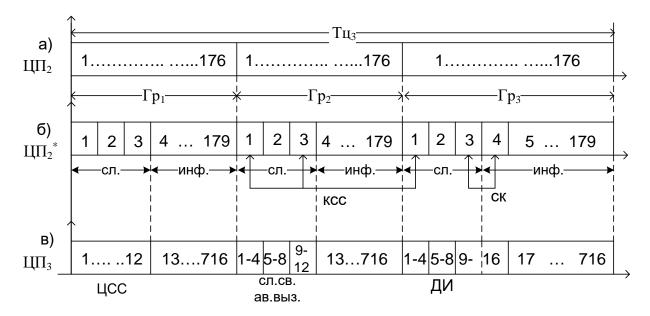


Рисунок 6 – Построение цикла передачи третичного цифрового канала

После преобразования в БАС в каждой группе дополнительно освобождается по три ИП для служебных целей, и получаемый преобразованный вторичный цифровой поток Π_2 в каждой группе будет содержать по 179 ИП (рис. 6, б).

Четыре преобразованных вторичных потока Π_2 затем посимвольно объединяются в третичный цифровой поток (рис. 6, в), у которого в каждой группе теперь насчитывается 716 ИП, при этом первые 12 позиций Γ_{p_1} отданы для передачи сигнала цикловой синхронизации вида 111110100000, на позициях 5 и 6 в Γ_{p_2} передается сигнал служебной связи, на позициях 5-8 в Γ_{p_3} – сигнал дискретной информации, а на позициях 7 и 8 в Γ_{p_2} – сигналы аварии и вызова. Позиции, отданные в третичном сигнале для передачи КСС и СК, нетрудно определить самостоятельно. Используя рисунок 6, можно убедиться, что тактовая частота преобразованного потока Π_2 равна

$$f_{\text{T2}}^* = f_{\text{T2}} \cdot (179/176) = f_{\text{T2}} (1 + 3/176) = 8592 \text{ кбит/с}.$$

Тактовую частоту преобразованного цифрового потока Π_2 можно также определить по формулам (2, 3).

Тактовая частота третичного потока соответственно будет равна

$$f_{\text{r3}} = 4.8592 = 34\,368$$
 кбит/с.

Информационная эффективность третичного потока $Э_{\Sigma}$ определяется по формуле 1.

При решение задачи необходимо обратить внимание, что количество символов ЦП₂, поступающих в БАС, будет зависеть от вторичного цифрового потока, полученного ранее. Кратность мультиплексирования является стандартной и равна 4, но при этом помимо служебных позиций, предусмотренных стандартом, в каждой группе на выходе БАС необходимо сформировать по q₃ служебных позиций (таблица 3) для возможности реализации средств сетевого автоматического контроля и управления.

5. При формировании четверичного цифрового потока методом двух-стороннего согласования скоростей цикл передачи составляет $T_{\text{ц4}} = T_{\text{ц3}} / 4 = 15,625$ мкс, при этом цикл разделяется на четыре подцикла (группы) длительностью $T_{\text{пц4}} = T_{\text{ц4}} / 4$. По аналогии с третичным цифровым потоком, можно определить количество символов ЦП₃, поступающих за это время в БАС, что составляет 537 символов, т.е. ровно в четыре раза меньше, чем в ЦП₃, полученном в предыдущем пункте (рис. 6, в). В отличие от предыдущих вариантов временного группообразования здесь количество символов в каждой группе на входе БАС различное, а цикл преобразованного цифрового потока ЦП₃* строится по-разному для каждой группы (рис. 7, 6).

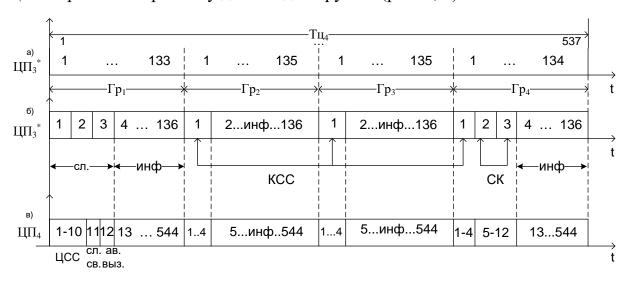


Рисунок 7 – Построение цикла передачи четверичного цифрового канала

Количество символов в каждой группе на выходе БАС одинаковое. В Γp_1 преобразованного Π_3^* первые три ИП остаются «пустыми» для служебных целей, а остальные (с 4 по 136) заняты информационными символами исходного Π_3 . В Γp_2 и Γp_3 для служебных целей освобождается по одной

 $И\Pi_1$, а в четвертой группе — первые две $И\Pi$. Таким образом, каждая группа преобразованного цифрового потока $L\Pi_3$ содержит по 136 $L\Pi$.

Тактовая частота преобразованного цифрового потока определяется по формуле 3 и составляет:

$$f_{\text{T3}}^* = f_{\text{T3}} (544/537) = f_{\text{T3}} (1 + 7/537) = 34816 \text{ кбит/с}$$

Четыре преобразованных третичных потока посимвольно объединяются в один четверичный (рис. 7, в), в результате чего в каждой группе размещается 544 символа. В Γp_1 на первых 10 позициях размещают цикловой синхросигнал, на 11-й позиции передают сигнал служебной связи, на 12-й — сигнал вызова и аварии.

Тактовая частота четверичного потока соответственно будет равна $f_{\text{T4}} = 4.34~816 = 139~264~\text{кбит/c}.$

Информационная эффективность четверичного потока $Э_{\Sigma}$ определяется по формуле 1.

В контрольной работе при построении цикла передачи четверичного цифрового канала необходимо предусмотреть в Гр₂ и Гр₃ преобразованного цифрового потока по q₄ (таблица 3) ИП для организации канала служебных данных. Распределение и назначение остальных служебных символов и кратность мультиплексирования (4) соответствуют стандартному потоку Е4.

Уровни плезиохронной цифровой иерархии, и основные параметры цифровых каналов сведены в таблицу 4.

Таблица 4 – Иерархия ПЦИ (PDH)

ЦСП Параметр	Первичная	Вторичная	Третичная	Четверичная
Кратность мультиплексирования	30 (N)	4 (M ₁)	4	4
Скорость передачи сигнала, кбит/с	2 048	8 448	34 368	139 264
Дополнительные параметры	Тец	$I_{ ext{cл.cв}} \ I_{ ext{ди}}$	$I_{ m c3}$	$I_{ m c4}$
Число каналов ТЧ	30	120	480	1920
Информационная эффективность	$artheta_{arSigma 1}$	$ec{artheta}_{arSigma2}$	$artheta_{\it \Sigma3}$	$artheta_{arSigma_4}$

На основании построенных циклов цифровых потоков, определить информационную производительность канала служебной связи $I_{\text{сл.св}}$ и дискретной информации $I_{\text{ди}}$ организованных во вторичном цифровом канале, сформированного канала для средств сетевого автоматического контроля и управления $I_{\text{с3}}$ в третичном цифровом канале, и канала служебных данных $I_{\text{с4}}$ в четверичном цифровом канале. Вопрос определения информационной производительности источника информации приведен в разделе 1.1 лекций. Результаты занести в таблицу 4 (дополнительные параметры).

Ознакомившись с пояснениями и рекомендованным материалом, можно приступать к выполнению задачи.

Материалы выполняемой задачи должны содержать:

- циклы передачи полученных цифровых потоков (рис. 3, 4, 6, 7); на рисунках необходимо отобразить поля служебных и информационных бит в преобразованном цифровом потоке, и назначение служебных бит в групповом потоке;
- структурные схемы оборудования вторичного, третичного и четверичного временного группообразования (рис. 5), с указанием численных значений тактовых частот цифровых потоков на входе и выходе БАС и группового сигнала на выходе УО;
- необходимые пояснения и вычисления при формировании циклов цифровых потоков.

При построении циклов передачи полученных цифровых потоков на рисунках необходимо отобразить поля служебных и информационных символов, обозначить назначение служебных бит.

Рассчитанные параметры полученной плезиохронной цифровой иерархии свести в таблицу 4.

Рекомендуемая литература

- 1. Шмытинский В.В. Глушко В. П. Многоканальные системы передачи. М.:Маршрут, 2002. 557 с.
- 2. Кирилов В. И. Многоканальные системы передачи. Учебник. М.: Новое знание, 2002.
- 3. Слепов Н.Н. Синхронные цифровые сети SDH. 4-е издание. М.:Эко-Трендз, 1999. 150 с.
- 4. Убайдуллаев Р. Р. Волоконно-оптические сети. М.:Эко-Трендз, 2001 г. 267 с.
- 5. Иванов А. Б. Волоконная оптика: компоненты, системы передачи, измерения. ДМ.: Компания САЙРУС СИСТЕМС, 1999.
- 6. Р. Фриман. Волоконно-оптические системы связи (4-е, дополненное издание). М.: Эко-Трендз, 2007. 512 с.
- 7. Бейли Д., Райт Э. Волоконная оптика: теория и практика. .: Эко-Трендз, 2008, 320 стр.
- 8. Фокин В.Г. Оптические системы передачи и транспортные сети. Учебное пособие. М.: Эко-Трендз, 2008, 288 стр.
- 9. Бакланов И. Г. SDH NGSDH: практический взгляд на развитие транспортных сетей. М.: Эко-Трендз, 2006, 720 стр.
- 10. Семенов. Ю. В. Проектирование сетей связи следующего поколения. М.: ОАО «ГИПРОСВЯЗЬ», 2005, 240 стр.
- 11. Бакланов И. Г. NGN: принципы построения и организации. М.: Эко-Трендз, 2008, 400 стр.
- 12. Бакланов И. Г. Технологии измерений первичной сети. Часть 1. Системы E1, PDH, SDH. М.: Эко-Трендз, 2002, 142 стр.
- 13. Скляр, Бернард. Цифровая связь. Теоретические основы и практическое применение. Изд. 2=e, испр. : пер. с англ. М.: Издательский дом «Вильямс», 2003.